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Abstract. This paper provides a critical review of velocity distribution in fluid flows within pipes. 

Models developed from the classical deterministic approach and Principle of Maximum Entropy 

(PME) are presented and discussed. According to the deterministic approach, the velocity 

distribution in laminar flow depends on the rheological model of the fluid. For turbulent flows, 

the well be known velocity profiles proposed by Prandtl-von Kárman lack physical consistency 

across the entire pipe region. The power-law model depends on the Reynolds number and fluid 

viscosity, while also exhibiting physical inconsistencies. On the other hand, entropic velocity 

distribution (EVD) was obtained from the PME, which in turn is based on the information theory, 

Shannon entropy (SE), random variable and constraints related to total probability and the 

conservation laws of mass, momentum, and energy. Thus, EVD represents a conceptual and 

generalized model that is physically consistent and satisfies all the assumptions required for flow 

within pipes. Additionally, it does not necessitate prior knowledge of the fluid rheological model 

and can be applied to both Newtonian and non-Newtonian fluids regardless of the rheological 

model, flow regime and roughness of the pipe. 
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1. Introduction 

Fluid flows in pressurized pipes are of great interest  
for engineering. The physical analysis of such flows 
requires knowledge of the velocity and shear stress 
distributions within the pipe. The model for the 
shear stress distribution is generalized since it is 
derived from a balance of forces on a fluid element 
and is independent of the rheological behavior and 
flow regime. 

In contrast, concerning the velocity distribution, 
there is no universally generalized and absolutely 
consistent model obtained solely from a 
deterministic approach. It has been well known that 
the proposed models have several limitations, such 
as: 

i. In a laminar flow regime, the velocity 
distribution depends on the rheological 
model of the fluid; 

ii. For turbulent flow, the well-known 
logarithmic profile proposed by Prandtl-
von Kárman does not satisfy the basic 
premises of flow such as maximum velocity 
at the center of the pipe, null velocity at the 
wall, null velocity gradient at the center and 

nonnull velocity gradient at the wall (Chiu 
et al., 1993; Louzada et al, 2021). 
Furthermore, the parameters of the model 
must be determined experimentally; 

iii. The power-law model also exhibits 
physical inconsistencies and depends on 
the Reynolds number and, consequently, 
the viscosity of the fluid; 

iv. In his investigations into the influence of 
pipe roughness, Nikuradse proposed an 
empirical model developed from studies 
with Newtonian fluid. 

Therefore, there is a clear necessity for developing a 
generalized, conceptual, and physically consistent 
model for velocity distribution in pipes. In their 
investigations, Chiu (1988) and Chiu et al. (1993) 
developed theoretical models applicable to both 
open channels and pressurized pipes based on the 
Principle of Maximum Entropy (PME) that 
overcomes the aforementioned limitations. PME is a 
variational principle that relies on information 
theory, random variables, Shannon entropy, 
Lagrangian function, total probability, and the laws 
of conservation of mass, momentum, and energy 
(Chiu, 1989). The entropic velocity distribution 



 

(EVD) rigorously satisfies the aforementioned 
premises and overcomes all limitations of models 
obtained through the deterministic approach (Souza 
and Moraes, 2017; Louzada et al., 2021). 

2. Rheological Models 

Rheology studies the flow and deformation of matter 
and allows for the determination of the relationships 

between shear stress (𝜏), shear rate (𝛾̇), and viscosity 
(𝜇) (Slatter, 1997; Eshtiaghi et al. 2013). 

Shear stress is the shearing force per unit area 
responsible for the flow of a fluid. Shear rate 
corresponds to the displacement of fluid elements 
relative to the distance between them. Viscosity is 
the property of the fluid that reflects its resistance to 
flow. Apparent viscosity encompasses not only its 
inherent resistance to motion but also its flow state 
(Agwu et al. 2021). 

Newtonian fluids are those that exhibit a linear 
relationship between shear stress and shear rate, as 
demonstrated by Eq. (1) (Sedaghat, 2017). 

                                 𝜏 = 𝜇. 𝛾̇ = 𝜇. (
𝑑𝑢

𝑑𝑟
)                              (1) 

All fluids that do not obey Eq. (1) are classified as 
non-Newtonian.  

A large number of rheological models for non-
Newtonian fluids have been proposed in the 
literature (Kelessidis and Maglione, 2006; Eshtiaghi 
et al. 2013; Bharathan et al. 2019; Agwu et al., 2021). 
However, for the purposes of this work, only the 
three most common non-Newtonian models (Table 
1) will be discussed. The Power Law model has the 𝐾 
and 𝑛 parameters. The first one is named fluid 
consistency index and indicates the fluid's resistance 
to flow. The second parameter is the flow behavior 
index which indicates how close a particular fluid is 
to Newtonian behavior. Thus, the fluid will be 
Newtonian if n=1, shear thinning when n<1.0, and 
shear thickening if n>1.0. The Bingham model 
includes a parameter called yield stress (𝜏𝑜),  which 
corresponds to the minimum shear stress required 
to initiate the flow of the fluid. The Herschel-Bulkley 
rheological model has the parameters 𝐾, 𝑛, and 𝜏𝑜. 

Tab. 1 - Rheological models of non-Newtonian fluids. 

 

3. Classical Approach 

For flows in pipes, the distribution of shear stress 
(𝜏𝑟𝑧) results from the balance of forces acting on a 
fluid element and is defined as (Lam et al. 2007) 

                                 𝜏𝑟𝑧 = (−
∆𝑃

𝐿
) . (

𝑟

2
)                                    (2) 

According to the classical approach of fluid 
mechanics, the velocity profile in laminar flow is 
obtained from the shear stress distribution and the 
rheological model of the fluid, as expressed in Eq. (3). 

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
𝑅ℎ𝑒𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑                               (3) 

The differential equation (DE) that results from Eq. 
(3), should be solved by applying a boundary 
condition i.e. 𝑢(𝑅) = 0. 

The simplest case is the laminar flow of a Newtonian 
fluid and for this specific condition, DE is derived 
from Eqs. (1) and (2) and can be written as 

     (−
∆𝑃

𝐿
) . (

𝑟

2
) = −𝜇 (

𝑑𝑢

𝑑𝑟
)                       (4) 

By solving Eq. (4) it is possible to obtain the classical 
velocity distribution for a Newtonian fluid defined by  

𝑢(𝑟) = (−
∆𝑃

𝐿
) .

𝑅2

4𝜇
[1 − (

𝑟

𝑅
)

2

]                  (5) 

For flows involving Bingham fluids, Eq. (3) becomes 
Eq. (6), from which the model represented by Eq. (7) 
is obtained (Chhabra and Richardson, 1999). 

(−
∆𝑃

𝐿
) . (

𝑟

2
) = −𝜇 (

𝑑𝑢𝑧

𝑑𝑟
) + 𝜏𝑜                 (6) 

        𝑢(𝑟) = (−
∆𝑃

𝐿
)

𝑅2

4𝜇
[1 − (

𝑟

𝑅
)

2

] −
𝜏𝑜

𝜇
𝑅 (1 −

𝑟

𝑅
)       (7) 

For non-Newtonian fluids that obey the power-law, 
the DE is found to be 

  (−
∆𝑃

𝐿
) . (

𝑟

2
) = 𝐾 (

𝑑𝑢

𝑑𝑦
)

𝑛

                       (8) 

In this case, the velocity profile derived from the 
power-law rheological model is defined as 

           𝑢(𝑟) = (−
∆𝑃.𝑅

2𝐾𝐿
)

1

𝑛
. (

𝑛

𝑛+1
) . 𝑅. [1 − (

𝑟

𝑅
)

𝑛+1

𝑛
]           (9) 

From this discussion, it is clear that for laminar flow 
regime, the velocity profiles can only be obtained if 
the rheological model of the fluid is previously 
known. In other words, each constitutive rheological 
equation provides its own velocity distribution. 

Likewise, there are also limitations associated with 
the velocity distributions for turbulent regimes. 
Turbulent flow in pipes is classically approached by 
considering different flow regions. The discussion 
presented by Chhabra and Richardson (1999) is 
based on the following regions: viscous sublayer, 
transition region, and turbulent zone. On the other 
hand, Bird et al. (2004) address turbulent flow based 
on four coexisting regions within the pipe:  

i. Viscous Sublayer: this is a region near the pipe 
wall where viscous effects dominate. The 
classical approach to turbulent flow in pipes is 
based on the assumption that the velocity 
profile is linear in the viscous sublayer; 

ii. Buffer Layer: Located between the viscous and 

Rheological Model Constitutive Equation 

Power-law 𝜏 = 𝐾(𝛾̇)𝑛 

Bingham 𝜏 =  𝜂. (𝛾̇) + 𝜏𝑜 

Herschel-Bulkley 𝜏 =  𝐾(𝛾̇)𝑛 + 𝜏𝑜 



 

inertial sublayers, where both viscous and 
turbulent effects are significant; 

iii. Inertial Sublayer: Near the main turbulent flow;  

iv. Turbulent Core: The region that encompasses 
the majority of the flow and vortices. 

For turbulent flow regimes, the Newtonian 
rheological model should consider both dynamic 
viscosity (𝜇) and turbulence-associated kinematic 
viscosity (𝑣𝑡), as depicted by Eq. (10) (Chhabra and 
Richardson, 1999). 

                                    𝜏 = (
𝜇

𝜌
+ 𝑣𝑡)

𝑑(𝜌𝜇)

𝑑𝑦
                            (10) 

According to Prandtl's postulate, turbulent kinematic 
viscosity depends on a dimension l, referred to as the 
mixing length, and it maintains a linear relationship 
with the distance from the wall (𝑦). Thus, kinematic 
viscosity and the mixing length are defined based on 
Eqs (11) and (12), respectively. 

                                         𝑣𝑡 = 𝑙2 𝑑𝑢

𝑑𝑦
                                   (11) 

                                            𝑙 = 𝑘𝑦                                     (12) 

Substituting Eqs. (11) and (12) into Eq. (10) yields 
Eq. (13), expressed in terms of the wall shear stress 
(𝜏𝑤)  (Chhabra and Richardson, 1999). 

                      𝜏𝑤 (
𝑅−𝑦

𝑅
) = [

𝜇

𝜌
+ 𝑘2𝑦2 (

𝑑𝑢

𝑑𝑦
)]

𝑑(𝜌𝑢)

𝑑𝑦
          (13) 

Eq. (13) will be simplified when one of the effects 
(viscous or turbulence) dominates over the other. 
Due to the proximity of the viscous sublayer to the 
wall, viscous effects prevail over those arising from 
turbulence, rendering the latter negligible. Thus, Eq. 
(13) becomes 

                                      𝜏𝑤 = (
𝜇

𝜌
)

𝑑(𝜌𝑢)

𝑑𝑦
                              (14) 

The velocity profile obtained from Eq. (14) is given 
by 

                                         𝑢(𝑦) =
𝜏𝑤

𝜇
𝑦                               (15)  

Therefore, according to this approach, for Newtonian 
fluids in the viscous sublayer, the velocity profile is 
linear. Thus, the approach from Eq. (10) has two 
clear limitations: 

i. Newtonian fluids; 

ii. Linear profile velocity in the viscous sublayer. 

Eq. (15) can also be expressed as a function of shear 
velocity (𝑢∗),  dimensionless velocity (𝑢+), and 
dimensionless length (𝑦+). Shear velocity is defined 
from the wall shear stress (𝜏𝑤) and density of the 
fluid (𝜌), as 

                                            𝑢∗ = √
𝜏𝑤

𝜌
                               (16)  

Dimensionless velocity and length are defined based 
on Eqs. (17) and (18), respectively (Peker; Helvaci, 

2008). 

                                              𝑢+ =
𝑢

𝑢∗
                                 (17) 

                                           𝑦+ =
𝑦𝜌(𝑢∗)

𝜇
                             (18) 

By substituting Eqs. (17) and (18) into Eq. (15), one 
obtains 

                                 𝑢+𝑢∗ = (
𝜏𝑤

𝜇
) (

 𝑦+𝜇

𝜌𝑢∗
)                          (19) 

In the region where most of the turbulent flow occurs 
(𝑦 ≪ 𝑅), turbulence effects dominate over viscous 
effects and, consequently, Eq. (13) reduces to 

                                     
𝜏𝑤

𝜌
= 𝑘2𝑦2 (

𝑑𝑢

𝑑𝑦
)

2

                          (20) 

The velocity profile in terms of shear velocity (𝑢∗)  is 
obtained by substituting Eq. (16) into Eq. (20), 
leading to 

                                          𝑢∗ = 𝑘𝑦
𝑑𝑢

𝑑𝑦
                                     (21) 

By solving the DE one gets Eq. (22), which can be 
expressed in terms of dimensionless velocity (𝑢+) 
and dimensionless distance (𝑦+) respectively, as 
shown in Eq. (23) (McKeon, 2004). 

                                     
𝑢

𝑢∗ =
1

𝑘
𝑙𝑛 𝑙𝑛 𝑦 + 𝐶                            (22) 

                               𝑢+ = 𝐴1 𝑙𝑛 𝑙𝑛 𝑦+  + 𝐴2                        (23) 

Eq. (23) is the well-known logarithmic velocity 
distribution of Prandtl-von Kárman, where 𝐴1 and 𝐴2 
are parameters that need to be determined 
experimentally. Another limitation that should be 
considered is that both parameters depend on the 
flow field in a pipe (transition and turbulent), as can 
be seen from Tab. 2 (Bird et al. 2004; Peker and 
Helvaci, 2008). 

Tab. 2 - Velocity profiles corresponding to different 
regions of turbulent flow. 

 

Several researchers have devoted their works to 
studying the influence of roughness on fluid flow in 
pressurized pipes. In the 1930s, using creative and 
innovative techniques, Nikuradse conducted 
experiments in pipes covered with sand grains with 
an average diameter of 0.8 mm in order to produce a 
rough surface. By using water as the working fluid, 
Nikuradse was able to achieve highly turbulent flows 
and proposed an empirical model for the mean 
velocity defined according to Eq. (24) (Chiu et al. 



 

1993). 

                      
𝑢̅

 𝑢𝑚𝑎𝑥

= 1,17 [1 + 9,02 (
𝑢

𝑢∗
)

−1

]
−1

            (24) 

Where 𝑢̅, 𝑢𝑚𝑎𝑥  and 𝑢∗ are the mean, maximum, and 
shear velocities, respectively. Eq. (24) is an empirical 
and non-generalized model since it was developed 
from experiments with a Newtonian fluid. 

The power-law model for the velocity profile in 
turbulent flows, represented by Eq. (25), is also 
frequently reported in the literature (Fox et al. 2006). 
The parameter a, which depends on the Reynolds 
number (𝑅𝑒), is defined by Eq. (26).  

                                    
𝑢

𝑢𝑚𝑎𝑥
= (1 −

𝑟

𝑅
)

1

𝑎
                             (25) 

                             𝑎 = −1,7 + 1,8𝑙𝑜𝑔𝑅𝑒                              (26) 

This model also has physical inconsistencies, as the 
velocity gradient is infinite at the wall and nonnull at 
the center of the pipe (Fox et al. 2006). Furthermore, 
it depends on the Reynolds number and, therefore, 
requires prior knowledge of the fluid viscosity. 

While the physical inconsistencies do not prevent the 
use of the equations for practical engineering 
purposes, the aforementioned models do not provide 
high accuracy across the entire cross-sectional area 
of the pipe. 

4. Approach based on the 
Maximum Entropy Principle 

Unlike the purely deterministic approach, the PME is 
based on Information Theory and encompasses both 
the deterministic and probabilistic domains 
(Louzada et al. 2021). The entropic velocity 
distribution (EVD) modeled by Chiu et al. (1993) was 
obtained through the Shannon entropy (SE), random 
variable (velocity), two constraints (total probability 
and conservation of mass), and maximization of SE 
by means of the Lagrange multipliers method (Singh, 
2011). The SE for the random variable, 𝐻(𝑢), is 
defined as a function of  probability density, 𝑓(𝑢), as 

                𝐻(𝑢) = − ∫ 𝑓(𝑢) 𝑙𝑛 𝑓(𝑢) 𝑑𝑢
𝑢𝑚𝑎𝑥

0
               (27) 

The maximization method based on the Lagrangian 
function (ℒ) requires the definition of constraints. 
The first one, associated with total probability (𝐶0)  
and the second two related to mass conservation 
(𝐶1), defined by Eqs. (28) and (29), respectively, must 
be considered (Chiu, 1987). 

                           𝐶0 = ∫ 𝑓(𝑢)𝑑𝑢 = 1
𝑢𝑚𝑎𝑥

0
                            (28) 

                         𝐶1 = ∫ 𝑢𝑓(𝑢)𝑑𝑢 = 𝑢̅
𝑢𝑚𝑎𝑥

0
                           (29) 

In this way, the Lagrangian function is defined as 

 

 ℒ =  − ∫ 𝑓(𝑢) 𝑙𝑛[𝑓(𝑢)] 𝑑𝑢 + 𝜆1[∫ 𝑓(𝑢)𝑑𝑢 −
𝑢𝑚𝑎𝑥

0

𝑢𝑚𝑎𝑥

0

1] + 𝜆2[∫ 𝑢𝑓(𝑢)𝑑𝑢 − 𝑢̅
𝑢𝑚𝑎𝑥

0
]                                       (30) 

Where 𝜆1 and 𝜆2 are the Lagrange multipliers 
associated with constraints 𝐶0 and 𝐶1, respectively. 
The maximization method requires the 
differentiation of the Lagrangian function with 
respect to the probability density function according 
to Eq. (31). 

      
𝜕𝐿

𝜕𝑓(𝑢)
 = −{1 + 𝑙𝑛 [𝑓(𝑢)] } +  𝜆1 +  𝜆2𝑢 = 0      (31)  

Eq. (31) allows to obtain 𝑓(𝑢), defined as 

                                𝑓(𝑢)  = 𝑒[(𝜆1−1)+𝜆2𝑢]                       (32) 

The Lagrange multipliers 𝜆1 and 𝜆2 are determined 
by means of the constraints. Thus, by substituting Eq. 
(32) into Eq. (28), one gets 

                               𝑒(𝜆1−1) =
𝜆2

[𝑒(𝜆2𝑢𝑚𝑎𝑥 )−1]
                           (33) 

The equation relating the mean and maximum 
velocities is obtained from the second constraint by 
substituting Eq. (32) into Eq. (29). The result is 

∫ 𝑢𝑓(𝑢)𝑑𝑢 = ∫ 𝑢
𝑢𝑚𝑎𝑥

0

𝑢𝑚𝑎𝑥

0
𝑒[(𝜆1−1)+𝜆2𝑢]𝑑𝑢 =

 𝑒(𝜆1−1) ∫ 𝑢𝑒𝜆2𝑢𝑑𝑢
𝑢𝑚𝑎𝑥

0
= 𝑢̅                                          (34) 

After integrating Eq. (34), it is possible to obtain an 
expression for the mean velocity as a function of  𝜆1 
and 𝜆2, according to Eq. (35).   

          𝑢̅ = 𝑒(𝜆1−1) {
𝑢𝑚𝑎𝑥𝑒(𝜆2𝑢𝑚𝑎𝑥)

𝜆2
−

[𝑒(𝜆2𝑢𝑚𝑎𝑥)−1]

𝜆2
2 }        (35) 

The mean velocity can be expressed solely as a 
function of 𝜆2 by substituting (33) into (35). The 
result is 

                               𝑢̅ =
𝑢𝑚𝑎𝑥𝑒(𝜆2𝑢𝑚𝑎𝑥)

[𝑒(𝜆2𝑢𝑚𝑎𝑥 )−1]
−

1

𝜆2
                        (36) 

Chiu et al. (1993) defined the product (𝜆2𝑢𝑚𝑎𝑥)  as an 
entropy parameter (𝑀), which allows modeling the 
velocity profile and indicates the degree of 
turbulence in a flow. Thus, Eq. (36) becomes 

                                     
 𝑢

𝑢𝑚𝑎𝑥
=

𝑒𝑀

𝑒𝑀−1
−

1

𝑀
                          (37) 

Chiu et al. (1993) used dimensionless coordinates 𝜉, 
𝜉

𝑜
 , and 𝜉

𝑚𝑎𝑥
 to define the cumulative velocity 

distribution, 𝐹(𝑢), as 

                𝐹(𝑢) = (
𝜉−𝜉𝑜

𝜉𝑚𝑎𝑥−𝜉𝑜
) = ∫ 𝑓(𝑢)𝑑𝑢

𝑢

0
                       (38) 

The expression that relates 𝑓(𝑢) and 𝐹(𝑢) is 

                           𝑓(𝑢) =
𝑑𝐹(𝑢)

𝑑𝑢
=

(
𝑑𝜉

𝑑𝑢
)

(𝜉𝑚𝑎𝑥−𝜉𝑜)
                      (39) 

Eq. (32) in Eq. (39), one obtains  

                    (
𝑑𝜉

𝑑𝑢
) =  (𝜉

𝑚𝑎𝑥
− 𝜉

𝑜
)𝑒[(𝜆1−1)+𝜆2𝑢]               (40) 

Eq. (40) is solved by separating variables and 
integrating them, as indicated by Eq. (41). 



 

                     
𝜉 

(𝜉𝑚𝑎𝑥−𝜉𝑜)
   =  𝑒(𝜆1−1) (

𝑒𝜆2𝑢

𝜆2
) + 𝐶               (41) 

When 𝑢 = 0, 𝜉 = 𝜉
𝑜

, and from this boundary condition, 

it is possible to obtain the velocity distribution as 

                𝑢 =  (
1

𝜆2
)  𝑙𝑛 [1 +

𝜆2

𝑒(𝜆1−1) (
𝜉−𝜉𝑜 

𝜉𝑚𝑎𝑥−𝜉𝑜
 )]            (42) 

It is more convenient to express Eq. (42) solely as a 
function of 𝜆2. Thus, by substituting Eq. (33) with Eq. 
(42), one obtains 

    𝑢 =  (
1

𝜆2
)  𝑙𝑛 [1 + [𝑒(𝜆2𝑢𝑚𝑎𝑥 ) − 1] (

𝜉−𝜉𝑜 

𝜉𝑚𝑎𝑥−𝜉𝑜
 )]       (43) 

The EVD as a function of curvilinear coordinates and 
entropy parameter is defined according to Eq. (44) 
(Chiu et al. 1993). 

     𝑢𝐸(𝜉) =  (
𝑢𝑚𝑎𝑥

𝑀
)  𝑙𝑛 [1 + [𝑒𝑀 − 1] (

𝜉−𝜉𝑜 

𝜉𝑚𝑎𝑥−𝜉𝑜
 )]    (44) 

Finally, EVD can also be written as a function of radial 
distance (𝑟) and pipe radius (𝑅) as shown in Eq. (45) 
(Singh, 2014; Louzada et al. 2021). 

      𝑢𝐸(𝑟) =  (
𝑢𝑚𝑎𝑥

𝑀
)  𝑙𝑛 [1 + [𝑒𝑀 − 1] (1 −

𝑟2

𝑅2 )]     (45) 

Where: 

         𝜉 =
𝜋𝑅2−𝜋𝑟2

𝜋𝑅2 , 𝜉𝑜 = 0 𝑎𝑛𝑑  𝜉𝑚𝑎𝑥 = 1 

Chiu (1988) defines the entropic parameter as a 
measure of the uniformity of probability and velocity 
distributions. Furthermore, 𝑀 is a parameter that 
models the velocity profile and indicates the degree 
of turbulence in a flow. Thus, the flow will be laminar 
if 𝑀 = 0 and turbulent when 𝑀 > 0.  

With regard to EVD defined by Eq. (45), the velocity 
is maximum at the pipe axis and zero at the wall i.e. 
𝑢(0) = 𝑢𝑚𝑎𝑥  and 𝑢(𝑅) = 0. In order to prove the 
physical consistency of the EVD, the limit can be 
applied when 𝑀 tends to zero according to Eq. (46). 

  𝑙𝑖𝑚
𝑀→0

(
𝑢𝑚𝑎𝑥

𝑀
) 𝑙𝑛 {1 + [𝑒𝑀 − 1] [1 − (

𝑟

𝑅
)

2

]} =
0

0
   (46) 

Applying the L’Hopital’s rule and taking the limit 
again, Eq. (46) becomes the classical velocity profile 
for the laminar flow regime, represented by Eq. (47). 

                               𝑢 =  𝑢𝑚𝑎𝑥 [1 − (
𝑟

𝑅
)

2

]                   (47)  

The EVD is a generalized model because it is 
independent of the type of fluid (Newtonian or non-
Newtonian), rheological model, flow regime (laminar 
and turbulent), and pipe roughness. Furthermore, it 
satisfies all the premises required in a flow.  

In addition to the physical consistency and 
generalization of EVD, it must be mentioned its 
relevant application in rheology, since a model for 
entropic shear rate (ESR) can be obtained from Eqs. 
(37) and (45), as presented in Eq. 48 (Louzada et al. 
2021). 

                     𝛾̇𝑤 = (
8𝑢

𝐷
) [

(𝑒𝑀 − 1)2

2(𝑀𝑒𝑀 − 𝑒𝑀 + 1)
]           (48) 

Obviously, the ESR model can also be employed for 
Newtonian and non-Newtonian fluids regardless of 
the rheological model, flow type, and roughness of 
the pipe. 

5. Conclusion 

The classical and deterministic approach to 
obtaining velocity distribution in pipe flow has 
several limitations. As pointed out earlier, in laminar 
flow the velocity distribution depends on the 
rheological model of the fluid i.e. each rheological 
equation results in a specific velocity profile. In the 
case of turbulent flow, the model proposed by 
Prandtl-von Kárman does not satisfy all the required 
premises for the flow and does not provide accuracy 
in all regions of the pipe. The logarithmic velocity 
profile has parameters that can only be determined 
experimentally. The power-law model, besides 
displaying physical inconsistency, depends on the 
Reynolds number and, therefore, requires prior 
knowledge of the fluid viscosity. On the other hand, 
the EVD overcomes the aforementioned limitations 
as it is a generalized model that can be employed for 
any fluid (Newtonian and non-Newtonian), 
regardless of its rheological model, flow regime, and 
roughness of the pipe. 

Notation 

The following symbols are used in the paper: 
𝐴1 e 𝐴2 = parameters of the Prandtl-von Kárman 
logarithmic velocity distribution; 
𝐶0= constraint related to total probability; 
𝐶1 = constraint related to mass conservation; 
𝐹(𝑢) = cumulative velocity distribution; 
𝑓(𝑢) = probability density function of u; 
𝐻(𝑢) = entropy of velocity; 
K = consistency index; 
𝑘 = proportionality constant; 
𝑙  = mixing length; 
ℒ = Lagrangian function; 
𝑀 = entropy parameter; 
n  = behavior index; 
a = Reynolds number-dependent parameter; 
𝑅  = inner radius of the tube; 
𝑅𝑒= Reynolds number; 
𝑟  = radial distance; 
𝑢 = velocity;  
𝑢𝐸  entropic velocity distribution; 
𝑢𝑚𝑎𝑥  = maximum velocity; 
𝑢∗ = shear velocity; 
𝑢̅ = mean velocity; 
𝑢+ = dimensionless velocity; 
𝑣𝑡  = kinematic viscosity; 
𝑦 = distance from the wall; 
𝑦+= dimensionless distance; 

𝛾̇ = shear rate; 

𝜂  = apparent viscosity; 
𝜆1 e 𝜆2 = Lagrange multipliers; 
𝜇  = dynamic viscosity; 



 

(−
∆𝑃

𝐿
) = pressure gradient; 

𝜉 isovel coordinate; 

𝜉𝑜 e 𝜉
𝑚𝑎𝑥

= minimum and maximum values of 𝜉; 

𝜌 = fluid-specific mass; 
𝜏 = sher stress; 
𝜏𝑜 = yield stress; 
𝜏𝑟𝑧 = stress distribution; 
𝜏𝑤 = wall shear stress. 
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